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Abstract--The processing conditions play an important role in the development of the crystallinity of 
thermoplastic polymers and the energy equation describing the heat transfer problem can be strongly 
coupled to the material kinetics. In this paper, the importance and nature of the coupling is evaluated by 
comparing the temperature and crystallinity distributions obtained from a fully coupled zone model 
(considered as the most general approach) with two cases : Neumann's solution (sharp interface-moving 
boundary) and the one-domain diffusion equation with no heat generation (uncoupled solution). Two 
non-dimensional parameters, Stefan's (St) and Deborah's (De) numbers, that play a key role in determining 
the extent of the coupling, are isolated. The influence of the coupling and its nature have been demonstrated 
numerically in selected cases. Results of the parametric studies show that De and St decide the nature of 
the coupling. The error made by decoupling the problem can be shown graphically and regimes are 
identified where the coupling is important or negligible. Criteria allowing the identification of the regimes 
are presented. Finally, an example is presented to demonstrate the importance of the coupling for the 

cooling of Nylon 6-6 and PET, which exhibit fast and slow crystallization kinetics. 

INTRODUCTION 

Unlike other materials, the solidification of  semi-crys- 
talline polymers is convoluted due to the strong depen- 
dence of  the nucleation and growth of  polymeric crys- 
tals on the cooling conditions. The crystal kinetics 
depend not only on the temperature but may be a 
strong function of  other material and process par- 
ameters such as the rate of  cooling, type of  polymer 
and the state and orientation of  the polymer chains. 

The macroscopic" approaches used for modelling 
the solidification of  polymers can be broadly divided 
into three categories: uncoupled approach, sharp 
moving boundary approach and the zone models. The 
first approach modtels the solidification in polymers 
by ignoring the heat generated due to the latent heat 
release as it can be a small fraction of  the total heat 
transfer involved during the cooling process. Hence, 
the heat flow is modeled by a heat diffusion equation 
written for the solid and liquid domain with no heat 
generation term. The energy equation in such cases 
will be decoupled from the kinetics of  the polymer. 
The evolution of  the microstructure is found from the 
temperature field. This approach has the advantage 
of  being easy to implement, it requires a minimum 
amount  of  computations and it does have a closed 
form solution for selected boundary conditions [1]. A 
variation of  this approach has been to modify the 
specific heat when one goes from a liquid domain to 
a solid domain to account for the heat of  fusion [2]. 

t Author to whom correspondence should be addressed. 

The second approach has adopted classical moving 
boundary solutions to model the solidification of  poly- 
mers. The classical approach was first used by Stefan 
[3] and later modified by Neumann [4] for semi-infi- 
nite domains and a closed form solution was found 
which is known as Neumann 's  or /and Stefan's solu- 
tion. In this approach the domain is sharply divided 
in a solid and liquid zone and the crystallization kin- 
etics are perceived as an " o n "  or "off"  phenomenon.  
Therefore, one clearly delineates the solid domain 
from the liquid domain via a sharp boundary. The 
energy equations are solved in both domains and 
coupled via an energy balance at the interface. 
However,  this approach is somewhat limited for semi- 
crystalline polymers as it does not account for the 
changing polymer kinetics during the cooling process 
and the crystallization front does not always propa- 
gate as a well-defined boundary [5, 6]. A variation of  
this approach, to account for changing crystallinity 
during cooling, was the introduction of  a variable 
interface temperature to couple the material kinetics 
with the heat diffusion process [7-9]. It was found, 
however, that the sharp interface assumption does not 
always hold. 

The third approach of  zone models was introduced 
for polymers by Berger and Schneider [10], Astarita 
and Kenny [11, 12] and Eder et al. [6] among others. 
With these models, it is possible to simulate the crys- 
tallization process as a propagating zone that can be 
very large (the complete domain) or very narrow (a 
sharp interface), depending on the processing con- 
ditions and material parameters. The crystallization 
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NOMENCLATURE 

Cp specific heat capacity at constant 
pressure [kJ kg-I  K 1] 

D crystallization kinetics parameter [K] 
D e  thermal Deborah number, Cttc/L 2 
J~ volume solid fraction 
H enthalpy [kJ kg -1] 
Hf heat of fusion [kJ kg ~] 
k thermal conductivity [W m I K -~] 
L half-thickness [cm] 
m crystallization parameter 
n crystallization parameter 
p crystallization parameter 
q' heat generation term [kJ m 3 s-l]  
St  Stefan's number, Hf/Cp/(T~ - Tg) 
t time [s] 
t* dimensionless time, t/tc 
tc crystallization characteristic time [s] 
tm~n minimum crystallization half-time [s] 
h/2 crystallization half-time [s] 

T* dimensionless temperature, 
( T -  Tg) / ( T, -- Tg) 

Tg glass transition temperature [K] 
T~ initial temperature [K] 
Tm melt temperature [K] 
x* dimensionless position, x / L .  

Greek symbols 
coefficient of thermal diffusivity [m 2 
S -1] 

2 Neumann's solution parameter [cm] 
p specific volume [kg cm 3] 
?~ relative crystallinity, Zactual/X~ 
Zo~ equilibrium crystallinity. 

Subscripts 
i initial value 
w cold wall. 

kinetics of the polymer are coupled with the energy 
equation through a heat generation term in the zone 
model. How one models this heat generation term 
depends on how the crystallization kinetics are 
described. The zone models warrant a numerical solu- 
tion and become fairly cumbersome and com- 
putationally expensive when the phase change zone 
becomes very narrow. Neumann's solution under such 
conditions is fairly accurate and has a closed form 
solution. Thus, it is important to identify conditions 
under which the zone becomes very thin so one can 
take advantage of a closed form solution. 

The experimental findings have supported the first 
approach (uncoupled solution) and the second 
approach (Neumann's solution) under certain cooling 
conditions. However, for many semi-crystalline 
materials, the results have been less than satisfactory 
with the first or the second approach [6]. This scenario 
points to the fact that there may be regimes of cooling 
and temperatures for which one may have to couple 
the kinetics with the energy equation and resort to 
zone models to predict the temperature and the crys- 
tallinity distributions of the material as a function of 
the temperature history. 

The objective of this work is to identify the regimes 
and conditions under which one should couple the 
kinetics and the energy equation for such materials. 
Our intent is to examine the importance of coupling 
the crystallization kinetics of the polymer with the 
energy equation and study the nature of this coupling. 
These considerations are important since uncoupled 
solutions or Neumann's solutions are often used to 
compute residual stresses (which depend on the tem- 
perature history of the material) and analyze exper- 
imental data. In cases where this coupling is signifi- 
cant, considerable errors can be introduced in 

calculating of the temperature field by use of 
uncoupled solution or assumption of a sharp bound- 
ary between the solid and liquid domains. 

In this paper, the importance and nature of the 
coupling is evaluated by comparing the temperature 
and crystallinity distributions obtained from a fully 
coupled zone model (considered as the most general 
approach) with two cases : Neumann's solution (sharp 
interface-moving boundary) and the one-domain 
diffusion equation with no heat generation 
(uncoupled solution). Two non-dimensional par- 
ameters, Stefan's number and Deborah's number, that 
play a key role in determining the extent of coupling, 
are isolated. Parametric studies are conducted to 
identify the regimes of coupling as a function of these 
two numbers. The cooling of PET and Nylon 645, 
both semi-crystalline materials with significantly 
different kinetics, is modeled with the zone model to 
show how the kinetics can change the temperature 
history and crystallinity under identical external con- 
ditions. This should caution the processing engineer 
to take into account the microstructure when design- 
ing the cooling characteristics. 

PHASE CHANGE MODELS 

Most polymers are cooled in the form of sheets or 
parts with their length and width much larger than 
their thickness. Hence, the cooling is usually iso- 
thermal in the plane and may be considered as a one- 
dimensional phenomenon in the thickness direction. 
As our goal is to identify regimes of coupling and 
understand the coupling, we restrict our attention to 
one-dimensional problems. The results may be 
extended to multi-dimensional cooling with caution. 

The approach here is to solve for the temperature 
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using all three approaches : a zone model in which the 
energy equation is written for the whole domain with 
a heat generation term, a decoupled model in which 
the energy equation and the kinetics are decoupled 
and Stefan's approach (or Neumann's solution) in 
which the domain is sharply divided in a solid and 
liquid zone and where the crystallization kinetics are 
perceived as being an "on" or "off" phenomenon. 

We present the formulation for each of these models 
below and isolate the Stefan's and Deborah's 
numbers. 

Zone model 
The zone models are based on the postulate that 

the total heat content (sum of specific heat and latent 
heat required for a phase change) can be represented 
by an enthalpy fimction such as 

= fii 
where Cp is the heat capacity, p the density, To a fixed 
temperature below the melting point and Hf the heat 
of fusion of the material. The discontinuity normally 
encountered at a macroscopically well defined inter- 
face is smoothed by the function describing the evol- 
ution of the solid fraction f~(T), in a manner similar 
to the enthalpy smoothing methods summarized by 
Crank [13]. This allows one to account for the pres- 
ence of a "mushy" zone between the fully solid zone 
and the fully liquid zone. This approach is useful when 
there is no well-defined boundary at a macroscopic 
level between the solid and liquid zones, which has 
been observed to be the case for many semi-crystalline 
polymers [6]. The: time derivative of equation (1) gives 

OH(T) OT 
~ - pCp - ~  - pHf ~t (2) 

where p and Cp are assumed to be constant for 
simplicity. 

Consider the crystallization of a slab of polymer 
melt of  half-thickness L with both of its external sur- 
faces exposed to a temperature below the melting tem- 
perature at time zero. The degree of crystallinity Z can 
take values ranging between 0 (no crystallinity) and 1 
(equilibrium crystallinity, i.e. the maximum crys- 
tallinity that can be reached for a given polymer). For 
this one-dimensional, transient heat transfer problem, 
the balance of energy can then be written as 

OT 02T 
pCp-~- = k~-x2 + q '  (3) 

where q' models tlhe heat generation term and depends 
on the crystallization rate of the polymer : 

q" = pHr ~t (4) 

with initial conditions 

t = 0  T = T ~ = T m  for O<<.x<~L. 

The constitutive equation for the crystallization rate 
(a~/0t) in equation (4) is derived from the kinetics of 
nucleation and growth of crystals in semi-crystalline 
polymeric materials and it may be a strong function 
of the temperature and cooling rate. The heat gen- 
erated by the latent heat release can also affect locally 
the temperature profile, thus underlying the coupling 
of equation (3) with equation (4). For  the case of a 
constant wall temperature, the boundary conditions 
for equation (3) are 

0T 
x = 0  T = T w  and x = L  ~ x = 0 .  

This problem contains two independent variables, 
time (t) and position (x); two dependent variables, 
temperature (T) and crystallinity (~) ; and six material 
constants, density (p), thermal conductivity (k), heat 
capacity (Cp), heat of fusion ( ~ ) ,  glass transition tem- 
perature (Tg) and a crystallization characteristic time 
(to). Tg is the temperature that signifies a change for 
the amorphous regions of polymer from a rubber-like 
state to a glassy state where the molecules have limited 
mobility. Furthermore, tc is small for fast crystallizing 
polymers and high for slow crystallizing polymers. 
Three process parameters also appear:  the slab half- 
thickness (L), the initial temperature (T0 and the wall 
temperature (Tw). All material parameters are 
assumed to be independent of temperature to focus 
on the objective of the analysis. 

The equations can be rendered dimensionless by 
dividing each variable with a characteristic value. 
Thus, we can define x* = x/L, t* = t/tc and a dimen- 
sionless temperature as T* = ( T -  Tg)/(Ti- Tg). Here 
we should point out that an alternative option to 
render time dimensionless is c~t/L 2. However, as our 
goal is to explore the influence of material kinetics, we 
use tc as the characteristic time. Thus, using these 
characteristic values, the governing heat balance equa- 
tion (3) can be cast in the dimensionless form 

0T* 02 T* dZ 
= D e ~  +St  (5) 

Ot* Ot* 

with the boundary conditions of constant wall tem- 
perature, expressed in non-dimensional variables, as : 

OT* 
x * = 0  T * = T *  and x * = l  O ~ - = 0 .  

In equation (5), De is the thermal Deborah number 
(De = cttdL 2) [11], similar to the Deborah number 
that describes the elasticity of a viscoelastic fluid. The 
Deborah number is the ratio of a characteristic time 
scale for a morphological change to occur (to) over the 
heat diffusion time scale (LZ/~t). A small De number 
implies that the kinetics of a polymer are fast (low to) 
compared to the heat diffusion process. St is the Stefan 
number (St = Hr/(Cp(Ti-Tw))). The Stefan number 
is the ratio of the latent heat to the specific heat and 
the imposed temperature difference. A large Stefan 
number signifies that the heat released during the 
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phase transition is absorbed very slowly by the 
material as a result of a variation of the sensible heat 
content. 

To describe the temperature in such materials, one 
needs to describe the mechanisms of nucleation and 
growth of polymeric crystals by a constitutive equa- 
tion that will describe the overall crystallization rate. 
Different constitutive equations have been proposed 
for the non-isothermal crystallization rate equation 
[14]. We consider a form similar to a model presented 
by Astarita and Kenny [11] : 

0Z 
Ot ~ = ( 1 - Z ) m T * " ( 1 - r * )  p, 0 <  T * <  1. (6) 

This equation is geared toward satisfying the 
requirement that the rate tends to zero as Z tends to 
one. Also, crystallization can occur only if the tem- 
perature is between the melt temperature and the 
glass-transition temperature. Formation of the crys- 
tals is possible only if the temperature is below the 
melting point and growth of crystals ceases with the 
temperature falls below the glass transition tempera- 
ture. Here, m, n and p will change the dependence of 
the crystallization rate on the degree of crystallinity 
and its sensitivity to the temperature and will be 
characteristic of the material to be modeled. 

Uncoupled formulation 
For a material with low heat of fusion and a very 

large crystallization zone, the heat generation term is 
often assumed to be small and neglected. The dimen- 
sionless heat diffusion equation then takes the form 

c3T* ~32T * 
Or* = D e - - .  (7) c3x .2 

The exact solution, with the conditions of a constant 
wall temperature T* at x * =  0 and an initial tem- 
perature T*= 1, is given by a Fourier series type of 
solution : 

4(1 - T*) 
T* = T* + - -  

x~ exp,- ~- n=l )S ln  (8) 

where n = 1, 3, 5 . . . .  The crystallinity profile is 
obtained, after the solution of equation (8), by inte- 
grating equation (6), i.e. 

~o d ~ - t ' T * " ( I - T * ) p d t ' ( 1  - ~ ) "  J,o (9) 

To numerically integrate equation (9), the simple 
Euler rule may be used in which the temperature is 
assumed to be constant over a small time interval 
( t i + j  - tO. This results in 

Z = 1 - - ( l - - z i )  e-r*O-r')(q+'- ' ' )  (10) 

where Z, is the crystallinity at t,. The exponents m, n 
and p in equation (6) are set to 1 for this case. 

Neumann's solution 
At the other extreme, the solidification of a polymer 

can be treated as a narrow zone and hence a front 
tracking method can be utilized. The well-known Neu- 
mann's solution provides an analytical solution for 
the solidification of a semi-infinite domain. The prob- 
lem at hand may be solved approximately by using this 
solution. In a domain of finite length L, this solution is 
valid only at small time scales due to the hypothesis 
of a semi-infinite domain. However, to solve the prob- 
lem at large time scales, it is recommended to use a 
numerical method such as the methods presented by 
Murray and Landis [15]. The solutions given by Neu- 
mann's solution (presented below) were all checked 
against the technique of Murray and Landis. 

Consider a semi-infinite domain divided in two 
regions : the solid region and the liquid region. At time 
t* = 0, the boundary surface at x* = 0 is quenched to 
a temperature T* below the melt temperature. The 
solidification then starts at x* = 0 and the solid-liquid 
interface moves in the positive x*-direction. The tem- 
perature distribution in the solid and liquid zones, 
with the position of the interface, are obtained from 
the Neumann's solution [1, 16]. The temperature dis- 
tribution of the solid phase is given as 

erf (x* /2( t* De)~/2) 
T*(x*, t*) = T* + (1 - T*) (11) 

erf (2) 

when the liquid zone is initially at the melt tempera- 
ture. All parameters of the problem have been rend- 
ered dimensionless as in the coupled formulation. 

An energy balance made at the interface is used to 
determine the relation needed to evaluate the par- 
ameter 2. The following transcendental equation is 
obtained : 

(1  , ~2 - Tw)e- - 2rt J/2 St. (12) 
erf(2) 

Once 2 is known, the temperature distribution can 
be found and the position of the interface s*(t) is 
determined from 

s*(t) = 22(t* De) 1/2. (13) 

The material is assumed to achieve its maximum 
crystallinity immediately after the passage of the front 
and the interface temperature always stays at the equi- 
librium melt temperature. 

The velocity of the front is obtained by taking the 
derivative with respect to time of equation (13) and, 
at very small process times, it can be observed that 
this velocity goes to infinity. Since no process occurs 
at an infinite speed in nature, this approach is not 
valid at very small process times. This phenomenon is 
in accordance with the assumption that heat propa- 
gates at an infinite speed in a solid. Nonetheless, this 
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solution will be useful later in providing a bound to 
the possible regimes of coupling. 

NON-ISOTHERMAL COUPLING 

Order-of-magnitude analysis 
The morphological changes that take place in a 

polymer can occur either as a sharp interface or as a 
very diffuse zone. It has been shown that the ratio 
of the Stefan number to the Deborah number, the 
Janeschitz-Kriegl (Jk) number as coined by Astarita 
and Kenny [11], 'will determine the type of mor- 
phological change in the material. A scaling analysis 
of the governing equation will indeed confirm that the 
ratio of the St  and De is important in describing the 
behavior of the system. It also reveals that, in addition 
to the ratio, St  and De independently play a role in 
the nature and exLent of the coupling. Scaling the 
equation will help to identify the conditions under 
which the heat diffusion and the crystallization kin- 
etics mechanisms should be coupled and the nature of 
this coupling. 

We can scale the temperature with the temperature 
difference A T =  (]q-Tg), the time with the crys- 
tallization characteristic time to, and the x-coordinate 
with the length of the domain L. The crystallinity is 
already scaled with the equilibrium crystallinity (of 
order one). The order-of-magnitude counterpart of 
equation (3) becomes: 

AT ~AT Hf 
t~- L 2 ' C o t¢ (14) 

t rans ien t  t e rm s teady-s ta te  t e rm kinetics term 

This equation ca:a be rearranged in terms of St  and 
De : 

1 De 
1. (15) 

St  St  ' ~ - - ~  v- 

* ~ ~ - - ~  J kinetics term 
t rans ien t  t e rm stead y-s ta te  term 

The last equation can help, in a qualitative manner, 
to identify the various regimes of the system when the 
time scale is of the order of to. For example, if St  ~ 0 
the transient aspec~L of the problem will be balanced 
by the steady-state term and the kinetics do not influ- 
ence the system, as expected. The system is then 
reduced to the simple transient heat diffusion equation 
where the uncoupled formulation may be used. If 
De ~ O, the transient term is balanced by the kinetics 
term, and both the cooling rate and the crystallization 
kinetics will be dominant and will influence each other. 
Also, if St  ~ 0 and De ~ O, it implies that the cooling 
rate of the domain must be very small to satisfy the 
equality. Although the steady-state and kinetics terms 
are then of the same: order, the transition is happening 
at such a slow pace that very little differences are to be 
expected between coupled and uncoupled approaches. 
The transient term will be more significant for time 
scales less than t~ and will become less important as 
time becomes larger than tc. 

This analysis of the equation offers qualitative 
understanding of the nature of the interactions and 
also shows that it is not only the ratio of St /De  but 
that the role of both numbers independently is also 
important. However, by conducting numerical simu- 
lations of the differential equation, one can bring for- 
ward the possible regimes of coupling between the 
energy equation and the crystallization kinetics in a 
quantitative manner. 

Numerical  experiments 
The importance and nature of the coupling can be 

determined by comparing the temperature and crys- 
tallinity distributions obtained by solving equation 
(5) with equation (8) (uncoupled formulation) and 
equation (11) (Neumann's formulation). 

The exact solution of (5) is in the form ofa Volterra 
integral equation of the second kind. To solve the 
integral equation emerging from (5), one has to use 
numerical integration. However, we resorted to finite 
differences since it is a technique that is easier to pro- 
gram and the implicit Crank-Nicholson scheme was 
used. A time-step of 10 3 was used and the domain 
was divided in 100 elements. All the runs converged 
with these values and no differences were found by 
reducing them. The crystallization kinetics, given by 
equation (6), can be computed as in equation (10) or 
by using a Runge-Kutta algorithm. Since the tem- 
perature and the crystallinity are two dependent vari- 
ables, they both need to be solved simultaneously and 
an iterative scheme was used for this purpose. 

Numerous combinations of the dimensionless par- 
ameters, St  and De, are possible and we studied a 
large number of cases for values o f  De and St  numbers 
ranging from 10 -4 to 1. However, to bring forward 
the possible regimes of coupling, it suffices to look at 
the following cases : 

case 1 : De = 10 -4 St  = 10 4 (De ~ O, St--* O) ; 

c a s e 2 : D e =  1 S t =  10 -4 ( D e ~  1 , S t y 0 ) ;  

case 3 : De = 1 0  - 4  S l  = 1 (De ~ O, S t  ~ 1) ; 

c a s e 4 : D e =  1 S t =  1 ( D e ~  1 , S t ~  1). 

The crystallization kinetics are given by equation 
(6), with the exponents m, n and q set to 1. This rate 
equation peaks at a crystallinity of zero and a dimen- 
sionless temperature of 0.5. A wall dimensionless tem- 
perature of 0.1 was chosen. Numerical results cor- 
responding to the above cases are presented in the 
next section. 

RESULTS AND DISCUSSION 

Temperature and crystallinity profiles 
The temperature and crystallinity profiles obtained 

for the above cases are presented in Figs. 1-4. An 
illustration of the problem being considered is pre- 
sented over each of these figures to facilitate the 
interpretation of the results. 
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Fig. 1. Temperature (T*) and crystallinity (Z) profiles in the domain at a dimensionless time t* = 75 
obtained using Stefan's approach, the uncoupled approach and the coupled zone formulation. 

It can be seen that, for case 1, the three temperature 
profiles are identical. This is to be expected since St is 
so small that any heat generation effect on the tem- 
perature is negligible. Furthermore, the small De 
implies that the sharp interface approach is also valid 
for the temperature profile since the solidification pro- 
cess occurs extremely slowly with almost no heat gen- 
eration. Hence any approach may be used in this 
regime since the temperature solutions matched at all 
times during the transient calculations. The crys- 
tallinity profile computed from the coupled for- 
mulation can not be distinguished from the profile 
obtained from the uncoupled heat diffusion equation, 
showing that the coupling is very weak. However, 
since Stefan's approach (Neumann's solution) 
requires a sharp front, a weakness of the sharp inter- 
face assumption is shown here as the interface is 
located where the phase transformation has just 
started, i.e. at a location where no crystallites have 

formed yet. However, as De and St both get smaller, 
this error is reduced since the crystallizing zone also 
becomes smaller. The position of the interface and the 
temperature profile were also verified with the finite- 
difference scheme of Murray and Landis [15] and no 
discrepancies were found. The temperature and crys- 
tallinity profiles are shown for a rather large dimen- 
sionless time of 75 since the cooling process is slow. 

For the second case, St is very small (10 -4 ) and the 
uncoupled heat diffusion equation gives an excellent 
approximation of the temperature profile. The tem- 
perature profile given by Neumann's solution is much 
higher than the other formulations, due to the assump- 
tion of a semi-infinite domain. Here, the results have 
been shown at the early stage of cooling. However, it 
was found that the Neumann's solution continued to 
diverge from the correct solution with time. The 
second case shows that, since St is very small, the 
heat generated by the phase transformation can be 
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Fig. 2. Temperature (T*) and crystallinity (~) profiles in the domain at a dimensionless time t* = 0.5 
obtained from Stefan's approach, the uncoupled approach and the coupled zone formulation. 

neglected and the crystallinity profile computed from 
the uncoupled heat diffusion equation is an excellent 
approximation. The crystallinity profiles are shown at 
a small value of  dimensionless time and follow each 
other closely throul~;hout the process. 

The third case presents a situation treated by Asta- 
rita and Kenny [11] where the ratio of St/De --* or. St 
is 1 and hence the kinetics term is not negligible and 
the crystallization p:rocess occurs over a small portion 
of the domain. This situation arises if the Jk number 
(St/De) is large, as discussed in [11]. The temperature 
profile, in this case, is heat diffusion controlled and 
since the crystalliz~ttion kinetics are restricted to a 
narrow zone of the domain, Stefan's approach is valid 
since the zone model approaches Neumann's solution. 
Figure 3 shows the crystallinity profiles. The crys- 
tallinity profile computed from the uncoupled heat 
diffusion equation overestimates the position and size 
of the crystallization zone. There is no heat generation 
in this formulation ~o slow down the cooling process 

and the movement of the interface, hence it cannot be 
used in this regime. The crystallinity and temperature 
profiles are shown again for a dimensionless time of 
75 since the cooling process is very slow. 

The final case of De and St ~ 1 shows that Stefan's 
approach and the uncoupled solution diverge con- 
siderably from the coupled approach. The tem- 
perature profile for this case is presented in Fig. 4 for 
a dimensionless time of 0.5. Stefan's approach is not 
valid in this regime since the transformation occurs 
over a large zone and the simple heat diffusion equa- 
tion (uncoupled approach) does not hold since it does 
not take into account the heat generated by the crys- 
tallization process over the time scale considered. 
Hence, it is necessary to couple the heat flow and the 
crystallization kinetics for such cases. The crystallinity 
profiles, presented in Fig. 4, show that the profiles 
computed from the three approaches are very differ- 
ent. The whole domain crystallizes almost uniformly, 
showing that a sharp interface approach does not 
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Fig. 3. Temperature (T*) and crystallinity (Z) profiles in the domain at a dimensionless time t* = 75 
obtained from Stefan's approach, the uncoupled approach and the coupled zone formulation. 

hold. Using the uncoupled heat diffusion equation to 
compute the crystallinity profile underestimates the 
level of crystaIlinity since the kinetics are dependent 
on the temperature which in turn are also influenced 
by the phase transformation process. Figure 4 shows 
the process for a dimensionless time of 5, since, at very 
early stages, the two crystallinity profiles are almost 
identical but diverge as the heat generation term 
becomes more important. For such cases, the two- 
way coupling accelerates the crystallization kinetics, 
a phenomenon not accounted for if the simple 
uncoupled formulation is used. 

Regimes o f  coupling 
The four cases shown from the parametric study 

clearly identify regimes where the energy equation 
and the crystallization kinetics may be decoupled and 
where the approach of a sharp interface is valid. These 
regimes can be determined with the De and St and 
one can avoid the time consuming approach of solving 

two coupled equations for these regimes. Further- 
more, as the ratio St~De becomes large, the dis- 
continuity introduced by a sharp interface causes 
numerical problems in this one-domain formulation 
and it is then preferable to use a two-domain numeri- 
cal scheme or to use the Neumann's solution if appli- 
cable. It is also helpful in the analysis of experimental 
data to identify cases where the crystallization process 
considered exhibits a strong coupling with the heat 
diffusion process. 

The various domains or regimes of coupling are 
represented graphically in Fig. 5 for the temperature 
and in Fig. 6 for the crystallinity. To establish these 
regimes, many parametric studies were conducted for 
De and St ranging from 0 to 1. 

A first regime can be observed for the case of St 
being less than 0.1. For these low values of St, the 
heat diffusion equation can be decoupled from the 
crystallization kinetics without introducing large 
errors. It is essential to couple both formulations at 
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at a dimen~ionless time t* = 5 obtained from Stefan's approach, the uncoupled approach and the coupled 

zone formulation. 

larger values of St, otherwise the temperature and 
crystallinity profiles obtained will be erroneous. 

At very low values of De, which is not an uncom- 
mon situation, the coupled formulation shows a very 
good agreement with the sharp interface approach for 
the crystallinity and the temperature profiles, 
suggesting the presence of another regime. To obtain 
a excellent match in temperature and crystallinity, the 
De must have values in the range of 1 0  - 3  . However, 
the temperature does match well even at values of 
De = 0.1 for parts of the domain where Z > 0.5. 

At low values of St and De, a fourth regime can be 
identified where coupled and decoupled approaches 
give identical solution for the temperature distri- 
butions. 

To demarcate the regimes, approximate lines have 
been draw in Figs. 5 and 6 where it might be possible 
to use an alternative formulation to the coupled equa- 
tions without introducing considerable errors in the 

computed temperature and crystallinity profiles. In 
these regimes, the coupling will be weak and the 
energy equation can be solved independently of the 
kinetics. 

E X A M P L E S  

To assess the validity of the regimes mentioned 
above for semi-crystalline polymers, the cooling of 
PET and Nylon 6-6 was studied in a plaque of 1 cm 
thickness (L = 0.5 cm). PET and Nylon 6 ~  have 
respectively slow and fast crystallization rates. The 
cooling of the melt is obtained by maintaining a 
dimensionless wall temperature of T* = 0.5. 

The material properties used for the computations 
are given in Table 1 and were obtained from [17, 18]. 
The Stefan numbers was computed with ~o~Hf since 
the heat of fusion is assumed to be given for a perfect 
polymer crystal. 
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The crystallization kinetics equation used for the 
computations is taken from Ziabicki [17]. This equa- 
tion has the form 

where 

I . 
d--; = , ,K(~(1  - Z )  In (16) 

K(T) = 1----exp [ - - 4  In 2 (T-- Tm~0~7 (17) 
tmin L D2 J" 

In equation (16), Z = )~a~t.a~/)~®, tmi. is the minimum 
crystallization half-time and is used as tc to calculate 
De, D and n are both kinetics parameters. 

The crystallization rate exhibited by equation (16) 

Table 1. Material properties and parameters used in the 
examples 

Properties PET Nylon 6-6 

Hf [J g ]] 125 205 
Tm [°C] 267 264 
Tg [°C] 67 45 
p [kg cm -3] 1.385 1.14 
Cp [J g-~ K -L] 1.4 0.46 
k [Wcm -l K i] 0.0014 0.00245 

[cm 2 s-1] 0.00063 0.00463 
tl/2 [s] 42 0.42 
~ 0.40 0.45 
n 2 2 
Tm,x [°El 190 150 
D 64 80 
De 0.11 0.0078 
St 0.18 0.92 
Jk = [St~De] 1.6 118 

is similar to equation (6) as they both have a bell- 
shaped form when crystallinity if plotted on the y axis 
and temperature is on the x axis. This form has been 
found to describe adequately the crystallization kin- 
etics of numerous semi-crystalline polymers [ 17]. The 
parameters required to compute the crystallization 
rates using equation (16) are given in Table 1. These 
parameters are also obtained from [17]. 

To be compatible with the dimensionless form of 
the energy equation, the crystallization kinetics equa- 
tion is written as 

d/--g=d;~ ntminK(T)(l_z)[lnf l \~/l[) l(n-  1)/" . (18) 

The temperature and crystallinity profiles of PET 
and Nylon 6-6 have been computed with the zone 
model, uncoupled formulation and Neumann's solu- 
tion (Stefan's approach). According to Figs. 5 and 6, 
for the St and De of these examples, the sharp interface 
and the uncoupled models should be marginally 
acceptable in computing the temperature profile for 
)~ > 0.5. This can be seen from Figs. 7 and 8. The 
temperature profile can be well approximated with 
Neumann's solution (sharp interface) for parts of the 
domain where Z > 0.5, as shown in Figs. 7 and 8, 
while the crystallinity profile is not rendered very well. 
The uncoupled approach also gives marginally accept- 
able results : however, the gap in the temperature pro- 
files between the coupled and uncoupled models 
increases at larger time scales. Thus, a coupled 
approach should be used for Nylon 6-6 and PET. The 
uncoupled approach can only be used for the initial 
stages of the cooling process. Stefan's approach would 
give good results with these materials only if the 
plaque were significantly thicker, which would reduce 
the magnitude of the thermal De. 

Finally, cooling profiles can easily be computed 
from the previous calculations and are useful to under- 
stand the effect of the crystallization process on the 
local temperature. Such profiles are presented in Fig. 
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9 for Nylon 6-6. The evolution of the temperature 
and the crystallinity is presented in Fig. 9 for points 
located at x * =  0.25, x * =  0.5 and x * =  1 in the 
domain. A first significant change of slope is en- 
countered in the temperature profile during the cool- 
ing process due to the considerable heat released dur- 
ing the passage of the crystallization front. A second 
change of slope occurs when the whole domain has 
crystallized and there is no more latent heat released 
due to the phase cihange process. These two phenom- 
ena are not exhibited by an uncoupled model. 

C O N C L U S I O N  

The importance: and the nature of the coupling 
between the crystallization kinetics of a polymeric 
material with the energy equation has been examined 
in this paper. By comparing the temperature and crys- 

tallinity distributions obtained from a zone model 
with the Neumann's solution and the uncoupled heat 
diffusion equation, it is possible to identify four 
different regimes of coupling. Combinations of these 
numbers have revealed regimes were the coupling is 
strong or weak and conditions under which a sharp 
interface between solid and liquid zones is an accept- 
able approximation. 

A front tracking method such as Stefan's approach 
is valid and easier to use at low values of De since a 
sharp interface introduces a singularity that requires 
more computations in the one-domain formulation 
used in the zone model. The series solution of the 
uncoupled heat diffusion equation is justifiable at low 
values of St. At low values of both St and De, tem- 
perature solutions are indistinguishable from the zone 
model. Outside these narrow regions, it is essential to 
use a zone model in which the crystallization kinetics 
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are coupled with the energy equat ion,  otherwise sig- 
nificant errors in the crystallinity and  the tempera ture  
profiles will be introduced.  Examples of  the cooling 
of  semi-crystalline polymers were presented to illus- 
trate the l imitat ions of  the Stefan 's  and uncoupled 
approaches  and  the utility of  the zone model. 
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